翻訳と辞書
Words near each other
・ Screen Producers Australia
・ Screen protector
・ Screen quotas
・ Screen reader
・ Screen reading
・ Screen Red
・ Screen Savers
・ Screen Scene
・ Screen scroll centrifuge
・ Screen Sharing
・ Screen Sinatra
・ Screen Singapore
・ Screen Snapshots
・ Screen Songs
・ Screen Souvenirs
Screen space ambient occlusion
・ Screen Station
・ Screen Stockport Film Festival
・ Screen tearing
・ Screen Test
・ Screen test
・ Screen test (disambiguation)
・ Screen Test (film)
・ Screen Tests
・ Screen theory
・ Screen Two
・ Screen Writers Guild
・ Screen-door effect
・ Screen-Free Week
・ Screen-labeled function keys


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Screen space ambient occlusion : ウィキペディア英語版
Screen space ambient occlusion
Screen space ambient occlusion (SSAO) is a rendering technique for efficiently approximating the computer graphics ambient occlusion effect in real time. It was developed by Vladimir Kajalin while working at Crytek and was used for the first time in 2007 by the video game ''Crysis'', developed by Crytek and published by Electronic Arts.
==Implementation==

The algorithm is implemented as a pixel shader, analyzing the scene depth buffer which is stored in a texture. For every pixel on the screen, the pixel shader samples the depth values around the current pixel and tries to compute the amount of occlusion from each of the sampled points. In its simplest implementation, the occlusion factor depends only on the depth difference between sampled point and current point.
Without additional smart solutions, such a brute force method would require about 200 texture reads per pixel for good visual quality. This is not acceptable for real-time rendering on current graphics hardware. In order to get high quality results with far fewer reads, sampling is performed using a randomly rotated kernel. The kernel orientation is repeated every ''N'' screen pixels in order to have only high-frequency noise in the final picture. In the end this high frequency noise is greatly removed by a ''N''x''N'' post-process blurring step taking into account depth discontinuities (using methods such as comparing adjacent normals and depths). Such a solution allows a reduction in the number of depth samples per pixel to about 16 or fewer while maintaining a high quality result, and allows the use of SSAO in soft real-time applications like computer games.
Compared to other ambient occlusion solutions, SSAO has the following advantages:
* Independent from scene complexity.
* No data pre-processing needed, no loading time and no memory allocations in system memory.
* Works with dynamic scenes.
* Works in the same consistent way for every pixel on the screen.
* No CPU usage – it can be executed completely on the GPU.
* May be easily integrated into any modern graphics pipeline.
Of course it has its disadvantages as well:
* Rather local and in many cases view-dependent, as it is dependent on adjacent texel depths which may be generated by any geometry whatsoever.
* Hard to correctly smooth/blur out the noise without interfering with depth discontinuities, such as object edges (the occlusion should not "bleed" onto objects).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Screen space ambient occlusion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.